

Oxford Cambridge and RSA

Wednesday 15 May 2024 – Morning

AS Level Physics B (Advancing Physics)

H157/01 Foundations of physics

Time allowed: 1 hour 30 minutes

You must have:

- the Data, Formulae and Relationships Booklet

You can use:

- a scientific or graphical calculator
- a ruler (cm/mm)

Please write clearly in black ink. **Do not write in the barcodes.**

Centre number

--	--	--	--	--

Candidate number

--	--	--	--

First name(s)

Last name

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer **all** the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

- The total mark for this paper is **70**.
- The marks for each question are shown in brackets [].
- This document has **28** pages.

ADVICE

- Read each question carefully before you start your answer.

Oxford Cambridge and RSA

ERRATUM NOTICE

Wednesday 15 May 2024 – Morning

AS Level Physics B (Advancing Physics)

H157/01 Foundations of Physics

FOR THE ATTENTION OF THE EXAMS OFFICER

To be opened on the day of the exam

Instructions to invigilators:

Before the start of the exam, give one copy of this erratum to each candidate.

Ask all candidates to correct **pages 5 and 7** of the **Data, Formulae and Relationships Booklet** as per the instructions to candidates below before starting the exam.

Instructions to candidates:

Add these equations to the **Data, Formula and Relationships Booklet**.

On page 5 in the section Motion and Forces:

power

$$P = FV, \quad P = \frac{\Delta E}{t}$$

In the same section **Motion and Forces**:

for circular motion

$$a = \frac{v^2}{r}, \quad F = \frac{mv^2}{r} = mr\omega^2$$

On page 7 in the section Field and Potential:

gravitational fields

$$g = \frac{F}{m}, \quad E_{grav} = -\frac{GmM}{r}$$

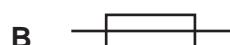
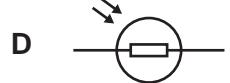
$$V_{grav} = -\frac{GM}{r}, \quad F = -\frac{GmM}{r^2}$$

If you have any queries, please call our Customer Support Centre on 01223 553998 or email support@ocr.org.uk

Section A

You should spend a maximum of **25 minutes** on this section.

Write your answer to each question in the box provided.

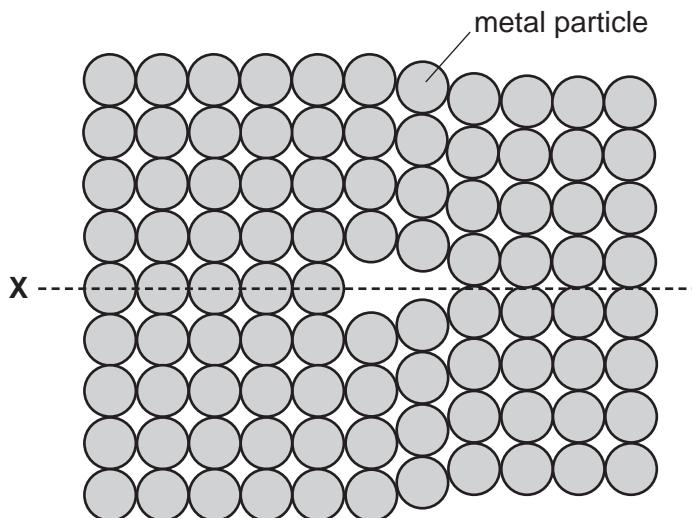


1 Which device is most accurate for measuring the time taken for a glider to travel a short distance along an air track?

- A Analogue stopwatch
- B Digital stopwatch
- C Light gates
- D Metre ruler

Your answer

[1]

2 The circuit symbol for a fuse is:


- A
- B
- C
- D

Your answer

[1]

3

3 The diagram shows the arrangement of particles in a metal.

The structure marked X is best described as:

- A A dislocation
- B A fracture
- C Chain entanglement
- D Slip

Your answer

[1]

4 A spacecraft takes an image of Saturn's moon Enceladus. The image of the full moon fills the imaging sensor which has diameter 5 mm. The moon's diameter is 500 km.

The linear magnification is of order:

- A 10^{-8}
- B 10^{-4}
- C 10^4
- D 10^8

Your answer

[1]

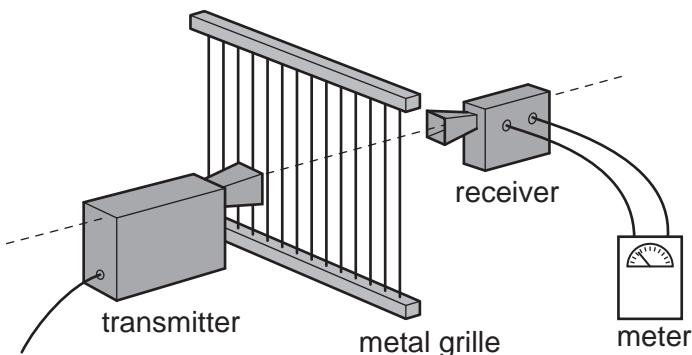
5 An automatic number plate recognition (ANPR) system identifies cars by reading the number plate from a camera image.

Which image processing technique can be used to locate the number plate in this image?

- A Applying false colour
- B Changing contrast
- C Edge detection
- D Removing noise

Your answer

[1]


6 What is the kinetic energy of a car of mass 500 kg travelling at 80 km/h?

- A 5.6 kJ
- B 40 kJ
- C 0.12 MJ
- D 1.6 MJ

Your answer

[1]

7 A student is using a microwave transmitter and receiver as shown in the diagram.

The student notices the reading on the meter changes as the metal grille is rotated about the direction of the microwave beam.

This observation provides evidence that microwaves can be:

- A Diffracted
- B Polarised
- C Reflected
- D Refracted

Your answer

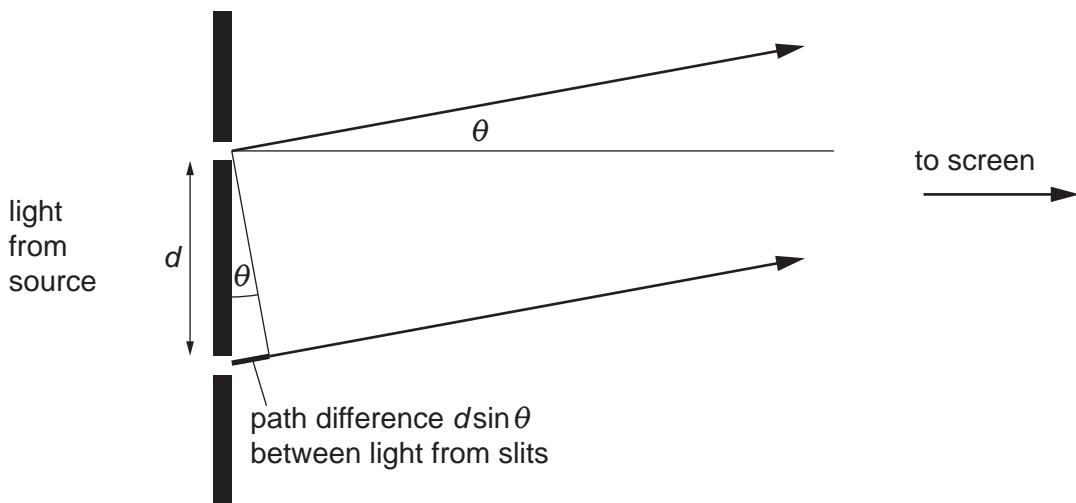
[1]

8 Which value would be a suitable estimate for the rate of increase in height of a mature, growing tree?

- A 0.5 m per month
- B 0.5 m per year
- C 10 cm per second
- D 10 cm per week

Your answer

[1]


9 What is the SI unit of power?

- A hertz
- B joule
- C volt
- D watt

Your answer

[1]

10 A student approximates the sine of a small angle in a diffraction experiment.

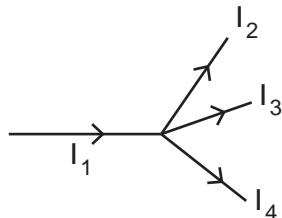
When $\theta = 1.5^\circ$ then $\sin(\theta)$ is approximately:

- A $\frac{1.5}{180\pi}$
- B $\frac{1.5\pi}{180}$
- C $\frac{180}{1.5\pi}$
- D $1.5 \times \frac{180}{\pi}$

Your answer

[1]

11 Newton's Third Law refers to a pair of forces.


What properties do those forces have?

	Magnitude	Direction	Acting On
A	Different	Same	One object
B	Different	Same	Two different objects
C	Same	Opposite	One object
D	Same	Opposite	Two different objects

Your answer

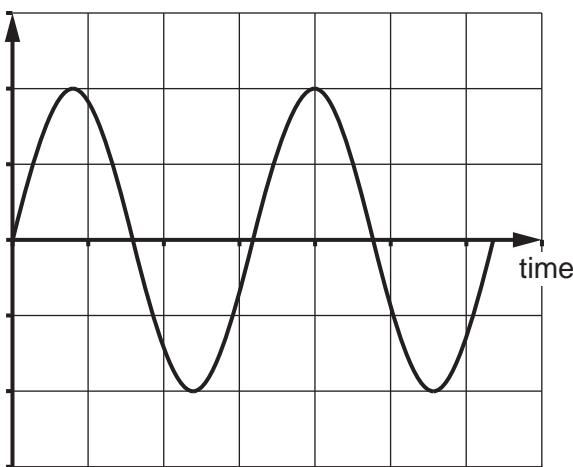
[1]

12 The diagram shows an example of Kirchhoff's First Law for the currents at a junction.

$$I_1 = I_2 + I_3 + I_4$$

The law describes the conservation of:

- A Atoms
- B Charge
- C Energy
- D Potential difference


Your answer

[1]

13 The diagram shows a sound wave displayed on an oscilloscope screen.

The oscilloscope timebase is set to 1 ms/div.

displacement

The frequency of the sound wave is approximately:

- A 155 Hz
- B 320 Hz
- C 500 Hz
- D 625 Hz

Your answer

[1]

14 Evidence that light energy is emitted as quanta comes from:

- A Electron diffraction
- B Millikan's oil drop experiment
- C Partial reflection
- D Photoelectric effect

Your answer

[1]

15 An electrical motor with output power 5.0 kW raises a load of mass 250 kg through a height of 5.0 m.

What is the minimum time this could take?

- A 2.5 s
- B 5 s
- C 50 s
- D 250 s

Your answer

[1]

16 The refractive index of a transparent plastic material is:

- A $\frac{1}{\text{speed of light in the plastic}}$
- B $\frac{\text{speed of light in a vacuum}}{\text{speed of light in the plastic}}$
- C $\frac{1}{\sin(\text{speed of light in the plastic})}$
- D $\frac{\text{speed of light in the plastic}}{\text{speed of light in a vacuum}}$

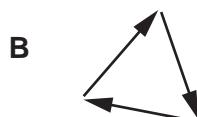
Your answer

[1]

17 In an experiment to determine the acceleration due to gravity, g , a ball bearing takes time t to fall distance s . The percentage uncertainty in each measurement is 5%.

A student calculates the acceleration due to gravity, $g = \frac{2s}{t^2}$

The percentage uncertainty in their answer is:

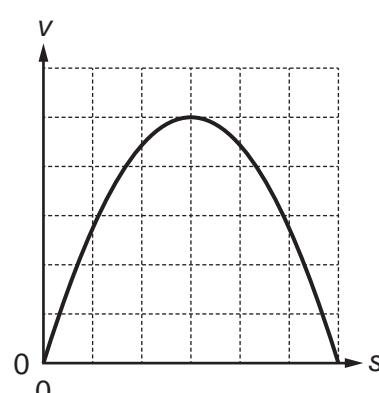
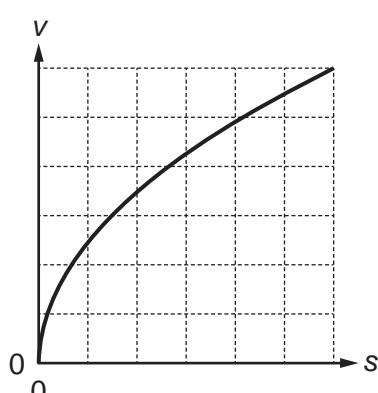
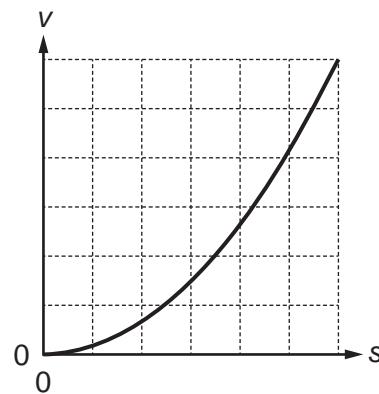
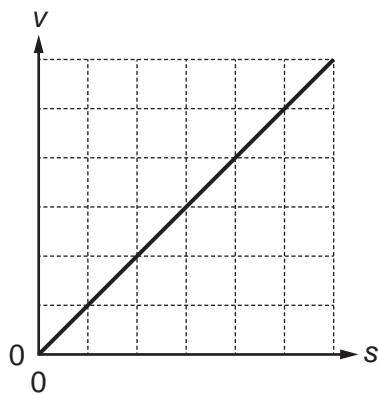

- A 0.5%
- B 5%
- C 10%
- D 15%

Your answer

[1]

10

18 Which diagram shows the addition of three forces that have no resultant force?

Your answer

[1]

19 Which graph shows the relationship between the distance, s , fallen by an object and its final speed, v , before hitting the ground?

Ignore the effects of air resistance.

Your answer

[1]

20 Two wires **P** and **Q** are made from different metals. Wire **P** has double the diameter and double the unstretched length of wire **Q**. Equal weights are suspended from both wires and both wires extend by the same amount. The metal of wire **Q** has Young modulus, Y .

What is the Young modulus of the metal of wire **P**?

A $\frac{Y}{2}$

B Y

C $2Y$

D $4Y$

Your answer

[1]

12

Section B

21

(a)

(i) Complete the sentence to give the **definition** of current.

Put a **ring** around each correct option.

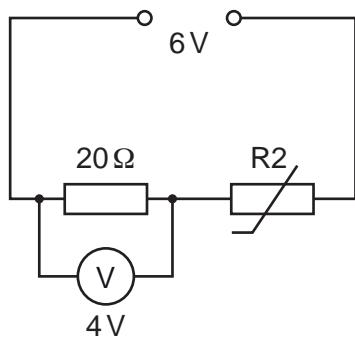
Current is the flow of

charged particles

free electrons

mobile carriers

[1]

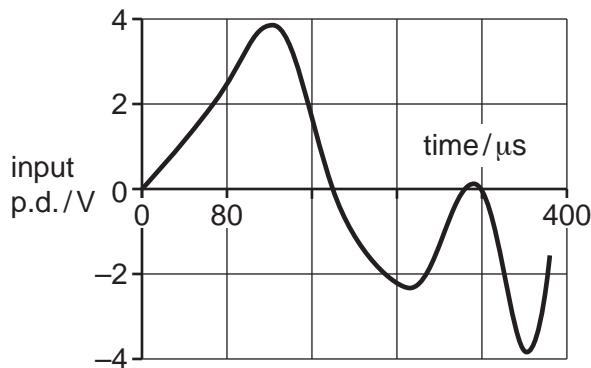
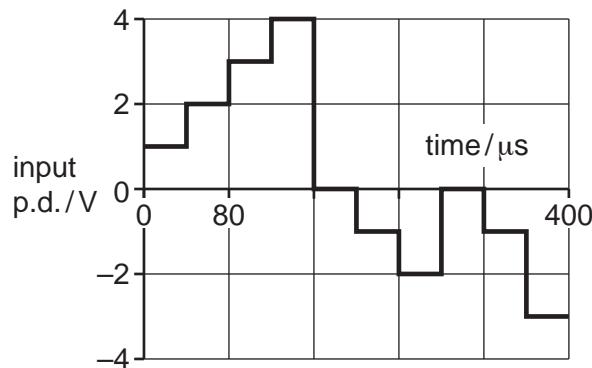

(ii) Two electrical components with different resistance are connected together so that the same current flows through them both.

Complete the sentence.

The two components are connected in

[1]

A potential divider circuit is used in a temperature sensor.



(b) State the energy transferred in joules when 1C of charge flows through the 20Ω resistor.

$$\text{Energy} = \dots \text{J} \quad [1]$$

(c) Determine the resistance of component R2.

$$\text{Resistance} = \dots \Omega \quad [2]$$

22 An electronics engineer is building a device to convert analogue signals to digital. **Fig. 22.1a** shows an analogue signal and **Fig. 22.1b** shows its conversion to a digital signal by sampling.

Fig. 22.1a**Fig. 22.1b**

(a) State, for the digital signal in **Fig. 22.1b**:

(i) the number of levels

Number of levels = [1]

(ii) the number of bits required to encode the signal

Number of bits = [1]

(iii) the time between samples.

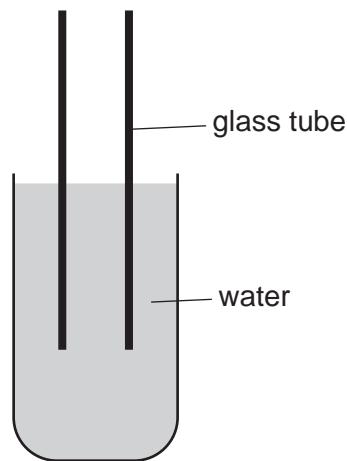
Time = μs [1]

(b) The quality of the digital signal will be acceptable if the minimum sampling rule is met:

$$\text{minimum rate of sampling} > 2 \times \text{maximum frequency of signal}$$

Show whether this rule is met for the signal being converted in **Fig. 22.1**.

The maximum frequency in the analogue signal is 12 kHz.


[2]

23 Two students are investigating stationary waves.

A tuning fork is struck and held above a glass tube partially in water as shown in **Fig. 23.1**.

Fig. 23.1

 tuning fork

(a) Explain how stationary waves are formed in the tube.

Do **not** include a description of the formation of nodes and antinodes.

.....

.....

.....

.....

[2]

15

(b) A tuning fork is placed above the opening of the tube.

A loud sound is heard when 33 cm of the tube is above the water surface (Fig. 23.2a).

The tube is pulled upwards out of the water until a loud sound is heard again.

This time 100 cm of the tube is above the water surface (Fig. 23.2b).

Fig. 23.2a

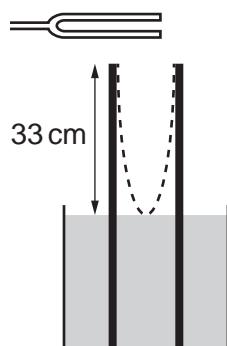


Fig. 23.2b

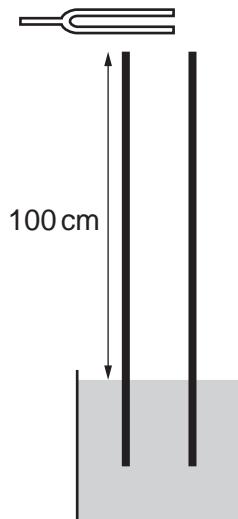


Fig. 23.2a shows the standing wave pattern (dotted lines) for the first loud sound.

Complete the diagram in Fig. 23.2b to show the standing wave pattern for the second loud sound.

[1]

(c) The students use their measurements to calculate the speed of sound in air.

They find it hard to agree the position where the loudest sound is heard.

Suggest and explain how they can improve their experiment to obtain a more precise value for the speed of sound in air.

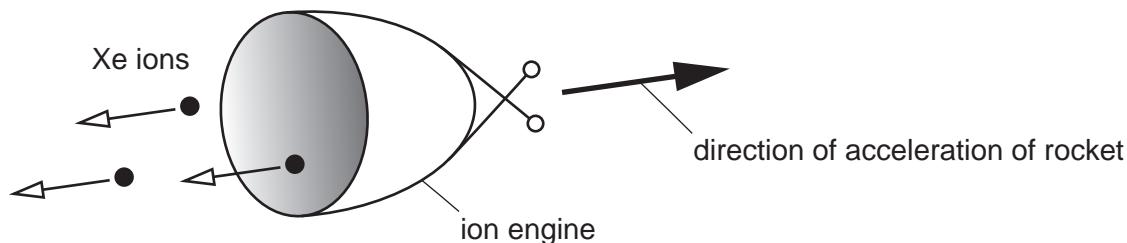
Suggestion

.....

Explanation

.....

.....


[2]

16

24 An ion engine is a proposed type of space rocket propulsion.

Fig. 24.1 shows an ion-engine rocket in space. The engine emits charged xenon particles that have been accelerated to high speed.

Fig. 24.1

(a) The rocket is stationary and emits a xenon ion.

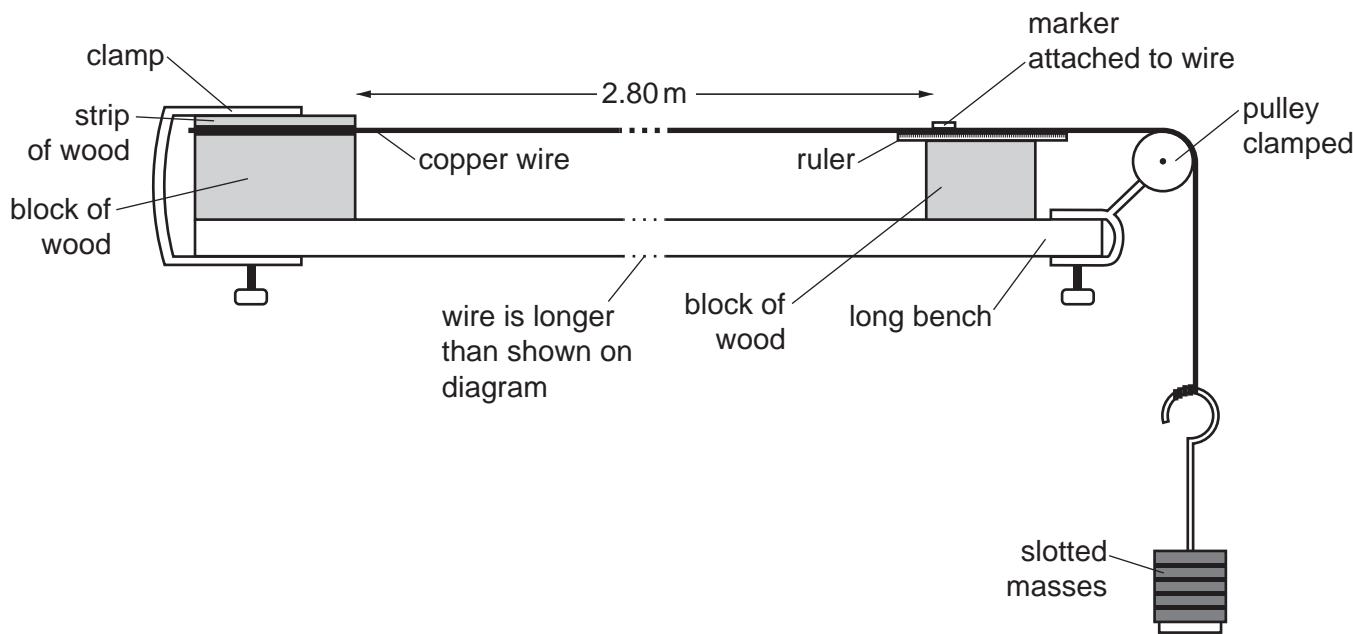
Explain why the rocket accelerates in the direction shown in **Fig 24.1**.

.....
.....
.....
.....
.....
.....
.....

[2]

(b) The mass of 6.0×10^{23} xenon ions is 131 g.

Calculate the momentum of a xenon ion emitted at a speed of 40 km s^{-1} .
State the units.


Momentum = Units = [3]

Section C

25 Molly is investigating the properties of copper.

She sets up the apparatus shown in **Fig. 25.1** to determine the Young modulus for copper.

Fig. 25.1

(a) Molly's teacher has asked her to plan how to carry out her investigation safely.

Suggest **two** hazards from using the apparatus shown in **Fig. 25.1**.

For each hazard, suggest a safety precaution Molly can take to work more safely.

Hazard

Precaution

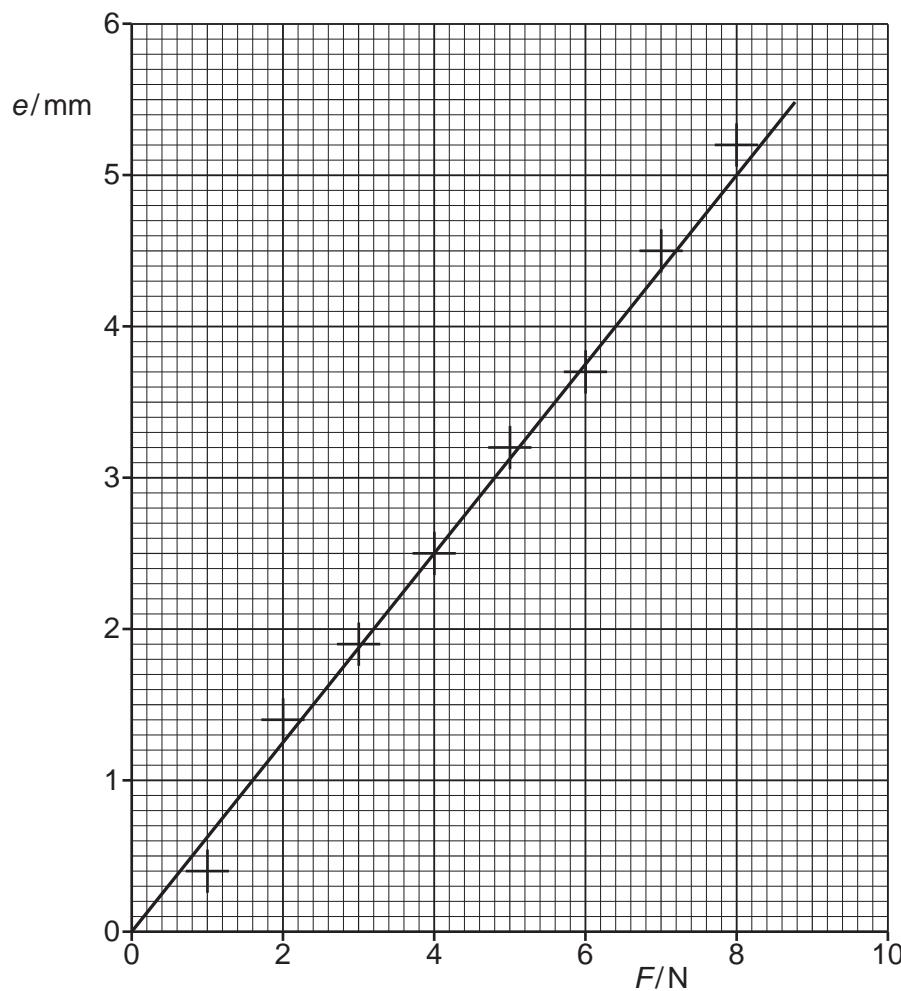
Hazard

Precaution

[4]

18

(b) Molly chooses a wire with diameter 0.22 mm.


Calculate the cross-sectional area of the wire.

Assume it has uniform, circular cross-section.

$$\text{Cross-sectional area} = \dots \text{ m}^2 \quad [2]$$

(c) Molly plots her results as a graph of extension against force as shown in **Fig. 25.2**.

Fig. 25.2

19

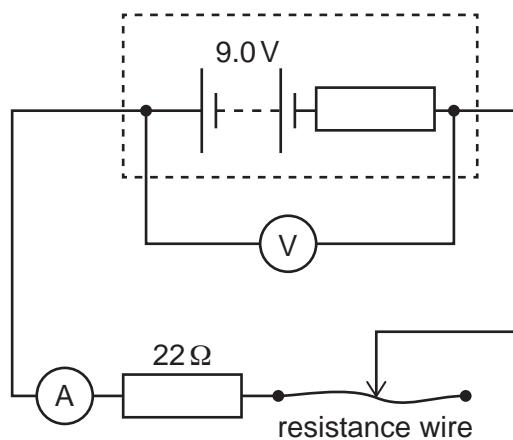
(i) Complete Molly's calculation to determine the Young modulus of copper.

$$\begin{aligned}\text{Young modulus} &= \frac{F/l}{eA} \\ &= \frac{7.37 \times 10^7}{\text{gradient}} \\ &= \underline{\hspace{2cm}}\end{aligned}$$

Young modulus = GPa [2]

(ii) Describe what the area under the graph represents.

.....
.....
..... [2]


20
BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

26 A teacher is demonstrating the effect of internal resistance on the current in a circuit.

The experimental arrangement is shown in **Fig. 26**.

Fig. 26

(a) Identify the independent variable, the dependent variable and the most significant variable that must be controlled in this experiment.

Tick **one** box in each column of the table.

	Independent	Dependent	Control
Temperature of wire	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Fixed resistor value	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Length of wire in circuit	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
E.m.f. of cell	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Terminal p.d. of cell	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

[3]

(b) The teacher's measurements are shown in the table below.

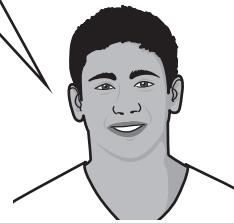
Length/cm	Terminal p.d./V	Current/mA	Internal Resistance/Ω
30	8.64	297	1.212
45	8.68	266	
60	8.71	241	1.203
75	8.74	220	1.182
90	8.76	203	1.182
105	8.78	188	1.170
120	8.79	175	1.180

The teacher calculated the internal resistance for each measurement using the equation:

$$V = \varepsilon - Ir$$

Calculate the internal resistance value for the 45 cm wire.

$$\text{Internal resistance} = \dots \Omega \quad [1]$$


(c) Two of the teacher's students are discussing the uncertainty in the mean value of the internal resistance.

Mean values of the internal resistance are more **precise** than individual measurements.

Marek

The mean value of the internal resistance is not **accurate** because there is a systematic error.

Ahmed

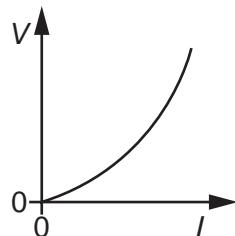
23

Explain how both students have correctly used the terms **accurate** and **precise**.

.....
.....
.....
.....
.....

[2]

(d) Calculate the resistivity of the resistance wire.


Use data from the table of results for 120 cm of wire.

The wire has cross-sectional area $2.84 \times 10^{-8} \text{ m}^2$.

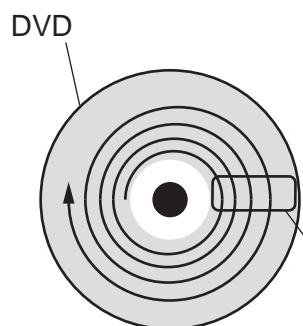
resistivity = $\Omega \text{ m}$ [4]

(e) The 22Ω resistor is replaced with Component X and the experiment is repeated.

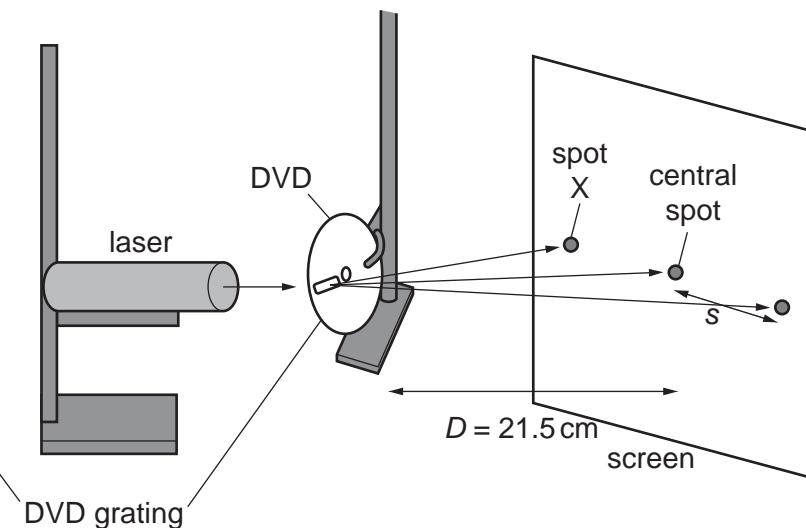
The sketch graph below shows the p.d. across Component X against current.

Suggest what Component X might be.

..... [1]


24
BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE


27 A DVD stores video data as marks in grooves that spiral around the disc as shown in **Fig. 27.1a**.

After the shiny coating is removed from the disc, the grooves in the transparent plastic can be used as a diffraction grating as shown in **Fig. 27.1b**.

Fig. 27.1a

Fig. 27.1b

The diagram shows the centre and first-order diffraction maxima (bright spots) in an experiment to measure the wavelength of laser light using a DVD.

(a) Complete the sentence:

At spot X, the between waves from each part of the grating is one wavelength. [1]

26

(b) There are 13 850 lines per cm across the DVD.

Determine the separation, d , between the lines on the DVD.

Write your answer in metres.

Separation $d = \dots$ m [1]

(c) Eight different students measured the distance, s , with a ruler and recorded the results in a dot-plot.

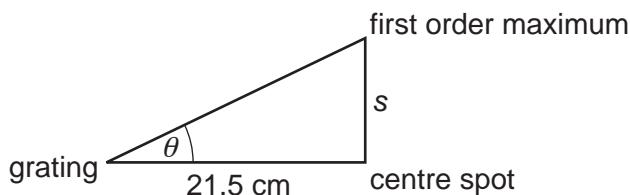
	•			
	•			
	•		•	
•	•	•	•	•
distance, s /cm	43.0	43.2	43.3	44.1

The measurement at 44.1 cm is an outlier.

Suggest a reason for this outlier.

.....
..... [1]

(d) One student suggests approximating the angle θ , between the centre and an outer spot on the screen using:


$$\theta \sim \frac{s}{D}$$

State why this is **not** a good approximation in this case.

.....
..... [1]

(e) Fig. 27.1c shows the experiment viewed from above.

Fig. 27.1c

Show that the first-order maximum occurs at an angle of about 64°

Choose a suitable value for s from the dot-plot.

[1]

(f) Calculate the wavelength of the laser light.

Use the equation for the first-order diffraction maximum: $\lambda = d \sin \theta$

$$\text{Wavelength} = \dots \text{nm} \quad [2]$$

(g) The wavelength calculation uses the measurements of s , D and d .

D was measured once using a metre ruler.

Explain why taking more measurements of s will **not** reduce the percentage uncertainty in the calculated value for the wavelength.

.....

.....

.....

.....

.....

[2]

END OF QUESTION PAPER

EXTRA ANSWER SPACE

If you need extra space use this lined page. You must write the question numbers clearly in the margin.

Oxford Cambridge and RSA

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of Cambridge University Press & Assessment, which is itself a department of the University of Cambridge